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Abstract. Circular and non-flat data distributions are prevalent across diverse domains
of data science, yet their specific geometric structures often remain underutilized in
machine learning frameworks. A principled approach to accounting for the underlying
geometry of such data is pivotal, particularly when extending statistical models, like the
pervasive Gaussian distribution. In this work, we tackle those issue by focusing on the
manifold of symmetric positive definite matrices, a key focus in information geometry. We
introduced a non-isotropic wrapped Gaussian by leveraging the exponential map, we derive
theoretical properties of this distribution and propose a maximum likelihood framework for
parameter estimation. Furthermore, we reinterpret established classifiers on SPD through
a probabilistic lens and introduce new classifiers based on the wrapped Gaussian model.
Experiments on synthetic and real-world datasets demonstrate the robustness and flexibility
of this geometry-aware distribution, underscoring its potential to advance manifold-based
data analysis. This work lays the groundwork for extending classical machine learning and
statistical methods to more complex and structured data.

1. Introduction

When dealing with complex data, modeling them as lying on a manifold often provides a
powerful solution (Sanborn et al., 2024; Jo and Hwang, 2024). However, classical Euclidean
probability distributions fail to capture the intrinsic geometry of the underlying manifold.
This limitation necessitates adapting the choice of probability distributions to respect the
manifold’s structure. In this work, we propose a solution by leveraging the exponential map
to wrap probability distributions defined in the Euclidean tangent space onto the manifold
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itself. This approach yields a wrapped distribution, intrinsically aligned with the manifold’s
geometry. Wrapped distributions have found applications across many domains, such as
embedding single-cell RNA data (Ding and Regev, 2021), analyzing wave patterns (Jona-
Lasinio et al., 2012), recognizing video and image features (Turaga et al., 2011), modeling
Gaussian processes on manifolds (Mallasto and Feragen, 2018; Liu et al., 2024) or doing
statistics on measurements of orientations (Lopez-Custodio, 2024).

Here, we focus on wrapping Gaussian distributions on the Riemannian manifold of
Symmetric Positive Definite (SPD) matrices. Gaussian distributions are a cornerstone of
machine learning and statistics (see p.102 of Casella and Berger 2001) due to their ubiquity
and theoretical underpinnings, such as the Central Limit Theorem (CLT) (Section 5.4 of
Wasserman 2004), which ensures that Gaussian distributions naturally arise in many scenarios.
In this work, we extend the CLT to wrapped Gaussians, providing a theoretical justification
for their study.

We chose to focus on SPD matrices, which form the Riemannian manifold Pd, as they
are pivotal in numerous applications, including Diffusion Tensor Imaging (Pennec, 2020),
Brain-Computer Interfaces (BCI) (Lotte et al., 2018), process control (Willjuice Iruthayarajan
and Baskar, 2010), and video processing (Tuzel et al., 2008). The inherent Riemannian
geometry of Pd necessitates adopting methods that respect its manifold structure when
analyzing SPD data.

This paper is organized as follows: in Section 3, we introduce the Riemannian geometry
of Pd. Next, we define wrapped Gaussians on Pd and explore their theoretical properties
in Section 4. In Section 5, we develop a Maximum Likelihood Estimator for parameter
estimation and validate it with synthetic experiments. Building on this foundation, Section 6
revisits existing classifiers on Pd through a probabilistic lens and introduces novel classifiers
based on wrapped Gaussians. Finally, we evaluate these classifiers with synthetic and
real-world datasets in Section 6.4.

2. Related work

Other works have already tried to extend the Gaussian distribution to a Riemannian
manifold. Said et al. (2018) propose an isotropic Gaussian on a Riemannian Symmetric
Space M defined using a center of mass ȳ ∈ M and a scaling factor σ > 0. In our work,
we are looking for a more complex model, requiring a non-isotropic distribution with some
preferred directions. A non-isotropic Gaussian distribution on a manifold has been proposed
in Pennec (2006), in which the authors use the characterization of the Gaussian distribution
as the distribution that maximizes entropy given a mean and a covariance matrix (theorem
13.2.2 of Kagan et al. 1973). However, sampling this distribution leads to computational
difficulties, the normalizing constant cannot be computed explicitly and in the case of a full
covariance matrix, the estimator of the parameters becomes problematic.

Wrapped distributions have first been studied in directional statistics (Mardia and Jupp,
2000), on a circle (Collett and Lewis, 1981) or on a sphere (Hauberg, 2018). Wrapped
Gaussians have also been instantiated on hyperbolic spaces, first by Nagano et al. (2019) and
then by Mathieu et al. (2019) and Cho et al. (2022). They mainly use it as the distribution of
the latent space of a Variational Autoencoder (Kingma and Welling, 2013) which is trained to
learn the distribution. Apart from the manifold, another difference with our approach is that
they wrap the Gaussian using a composition of the exponential map with parallel transport
where we will only use the exponential map. Wrapped distributions have also been studied
on a more general Riemannian manifold. For example, Galaz-Garcia et al. (2022) define
wrapped distributions on homogeneous Riemannian manifolds. A major difference with our
work is that they use a volume preserving map to push-forward the density from the tangent
space to the manifold, leading to a simpler expression of the density, without any volume
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change term. In Chevallier et al. (2022) and Chevallier and Guigui (2020), the authors work
on symmetric spaces. They mainly study the Jacobian determinant of the exponential map,
first in a general setting and then on different examples (Grassmannians, pseudohyperboloids
and special Euclidean group). Unlike our work, they consider the distribution on the tangent
space to always be centered, where we consider a more general setting by allowing µ ̸= 0. To
estimate the parameters of their wrapped Gaussians, they use moment estimation. Finally, in
Troshin and Niculae (2023), they define a more general wrapped Gaussian, the β−Gaussian
that has a compact support.

In the sequel, we propose a wrapped Gaussian on the manifold of SPD matrices that is
not centered on the tangent space. After deriving some theoretical properties, we show that
our wrapped Gaussian can be used in practice, showcasing the estimation of the parameters
from a finite sample. Finally, we use our wrapped Gaussian to build a framework that unifies
and generalizes classification on SPD matrices, and propose new classifiers. This application
shows the potential of our wrapped Gaussian to become a generic, flexible and powerful tool
for manifold-based data analysis.

3. How to deal with SPD matrices ?

3.1. The Riemannian geometry of SPD matrices. The set of d× d symmetric, positive
definite (SPD) matrices, denoted Pd is defined as follows:

Pd = {p ∈ Rd×d | p⊤ = p and ∀x ∈ Rd \ {0}, x⊤px > 0}.
This set is convex and open in the set of d × d symmetric matrices Sd and thus, it is a
manifold of dimension d(d+1)/2. For all p ∈ Pd, the tangent space TpPd at p can be identified
with Sd. Moreover, for p ∈ Pd one can define an inner product on the tangent space TpPd at
p by:

∀u, v ∈ TpPd, ⟨u, v⟩p = tr(p−1up−1v). (1)
This inner product is called the Affine Invariant Riemannian Metric (AIRM) (Pennec, 2020)
as, if a is an invertible matrix, one has ⟨aua⊤, ava⊤⟩apa⊤ = ⟨u, v⟩p. Once endowed with
this metric, Pd is a complete connected Riemannian manifold of non-positive curvature (see
Appendix I of Criscitiello and Boumal 2023). It is therefore a Hadamard manifold (Shiga,
1984). Using the Cartan–Hadamard theorem (theorem 12.8 of Lee 2018) one has that Pd
is diffeomorphic to Rd(d+1)/2 through the exponential map Expp : TpPd ≃ Rd(d+1)/2 → Pd.
Another consequence of the completeness of Pd is that each pair of points (p, q) ∈ P2

d can
be connected by a unique minimizing geodesic whose length defines a distance on Pd. This
AIRM distance, between p and q is given by:

δ(p, q) = ∥ log(p−1/2qp−1/2)∥F (2)

where log is the matrix logarithm and ∥·∥F the Frobenius norm. Other useful tools of Riemann-
ian geometry that will be used in the following are the exponential map Expp : TpPd → Pd
and its inverse, the logarithm map Logp : Pd → TpPd. For p, q ∈ Pd and u ∈ TpPd, those
maps are given by the following expressions (see chapter 6 of (Bhatia, 2007)):

Expp(u) = p1/2 exp(p−1/2up−1/2)p1/2,

Logp(q) = p1/2 log(p−1/2qp−1/2)p1/2.
(3)

Finally, when Pd is equipped with the AIRM metric given at Equation (1), the Riemannian
volume element at p = [[pij ]] ∈ Pd is given by (see Section 4.1.3 of Terras 1988):

dvol(p) = det(p)−(d+1)/2
∏
i≤j

dpij (4)
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Figure 1. An illustration of a wrapped Gaussian WG(p;µ,Σ).

where dpij is the Lebesgue measure on R. The volume dvol is also invariant under congruence
by invertible matrices.

3.2. The vectorization of the tangent spaces. As described in Section 3.1, the tangent
space TpPd at point p ∈ Pd is identified with the space of d× d symmetric matrices Sd which
is isomorphic to Rd(d+1)/2. We define such an isomorphism called the vectorization as follows:

Definition 3.1 (Vectorization). We start by defining the vectorization at identity for a
symmetric matrix u = [[uij ]]:

VectId : u ∈ TIdPd 7→(u11,
√
2u12, u22,

√
2u13,

√
2u23, u33,

. . . ,
√
2ud−1,d, udd) ∈ Rd(d+1)/2

Then, for p ∈ Pd, we define the vectorization at p:

Vectp : u ∈ TpPd 7→ VectId(p
−1/2up−1/2).

One of the important property of Vectp is that it is an isometry between (TpPd, ⟨·, ·⟩p) and
(Rd(d+1)/2, ⟨·, ·⟩2). More information on this vectorization can be found in Section 3.3.3.3. of
Pennec (2020) or in Appendix A.

4. Wrapped Gaussian on the manifold of SPD matrices

In this work, our objective is to define a non-isotropic Gaussian on the manifold of SDP
matrices Pd. In this section, we define a wrapped Gaussian through the way they will be
sampled. We will also give the density of a wrapped Gaussian and, we will show that, unlike
usual probability distributions, a given wrapped Gaussian can be parametrized by different
sets of parameters, leading to an equivalence relation. In the following, we will denote
Θ = Pd × Rd(d+1)/2 × Pd(d+1)/2 the space of parameters of the wrapped Gaussian which is a
product manifold.

4.1. The definition. To define a wrapped Gaussian, we start with a classical Euclidean
Gaussian random variable in Rd(d+1)/2 and push it on the manifold Pd using the exponential
map as follows:
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Definition 4.1 (Wrapped Gaussian). Let p ∈ Pd, µ ∈ Rd(d+1)/2 and Σ ∈ Pd(d+1)/2. A random
variable X on Pd follows a wrapped Gaussian denoted WG(p;µ,Σ) if

X = Expp(Vect
−1
p (t)), t ∼ N (µ,Σ).

A wrapped Gaussian is illustrated in Figure 1. This gives us a very simple algorithm to
sample a wrapped Gaussian WG(p;µ,Σ), since it is simply based on the sampling of N (µ,Σ)
in TpPd. Moreover, we can rewrite this definition using a push-forward (see definition 2.1 of
Peyré and Cuturi (2020), Section 3.6 of Bogachev (2007) or Appendix B):

WG(p;µ,Σ) = (Expp ◦Vect−1
p )#N (µ,Σ) (5)

where # denotes the push-forward operator.
Let us comment on the different parameters: p gives us a tangent plan from which the

Gaussian is wrapped, so it locates the Gaussian on the manifold. µ is the mean of the
Gaussian in the tangent space TpPd. As Pd and TpPd are in bijection through the exponential
map, p and µ play a symmetric role that will be unveiled in Section 4.4. Finally, Σ is the
covariance matrix between the entries of the SPD matrices. In the special case where the
SPD matrices are covariance matrices, Σ models the covariance of the covariances, therefore,
it can be seen as a fourth order moment.

4.2. The density of a wrapped Gaussian. The density of the wrapped Gaussian
WG(p;µ,Σ) can be obtained from its pus-forward given in Equation (5) (see Theorem B.2
in Appendix B).

Theorem 4.2. The density fp;µ,Σ of the wrapped Gaussian WG(p;µ,Σ) exists and is:

∀x ∈ Pd, fp;µ,Σ(x) =
gµ,Σ(Vectp(Logp(x))

|Jp(Logp(x))|
(6)

where gµ,Σ is the density of the multivariate Gaussian N (µ,Σ) and Jp(·) = det(dExpp(·)) is
the Jacobian determinant of the exponential map Expp.

The Jacobian determinant of the exponential map describes the volume change induced
by the identification of TpPd and Pd by the exponential map Expp. To compute the density
explicitly, one needs to compute the Jacobian Jp(u), which has a closed form expression for
the manifold Pd (see Section 5.3 of Chevallier and Guigui (2020) or Appendix C).

Proposition 4.3. The Jacobian determinant of the exponential map at the identity ExpId is:

∀u ∈ TIdPd, JId(u) = 2
d(d−1)/2

∏
i<j

sinh
(
λi(u)−λj(u)

2

)
λi(u)− λj(u)

where the λi(u) are the eigenvalues of u. Then, one can use the previous formula to compute
the Jacobian determinant of the exponential map at any point p ∈ Pd:

∀u ∈ TpPd, Jp(u) = JId(p
−1/2up−1/2).

It should be noted that, unlike the wrapped Gaussians defined in Galaz-Garcia et al.
(2022), Troshin and Niculae (2023) and Nagano et al. (2019), we do not restrict ourselves
to a centered multivariate Gaussian N (0,Σ) on the tangent space TpPd. In our case, we
allow the wrapped Gaussian to have an extra parameter µ, thus extending the flexibility and
applicability of the model. Having a non-centered distribution on the tangent space TpPd
leads to new considerations that will be discussed in Section 4.4.
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Remark 4.4. In this work, we focus on extending the multivariate Gaussian to a Riemannian
setting. With no extra difficulty, one could wrap an Elliptically Contoured distribution (EC)
on Pd (chapter 6 of Johnson (1987) or Delmas et al. 2024). We give more detail on this in
Appendix F.

4.3. Some properties of wrapped Gaussians. Let us now give some properties of the
wrapped Gaussians. We start by a rescaling property, then generalize the Central Limit
Theorem to the manifold Pd and finally, we study the mean of the wrapped Gaussian in the
special case of µ = 0.

Proposition 4.5. Let X ∼ WG(Id; 0d(d+1)/2, Id(d+1)/2) and let (p, µ,Σ) ∈ Θ. There exists a
transformation of X denoted Ψ such that

Ψ(X) ∼ WG(p;µ,Σ).

Thus, the wrapped Gaussian WG(Id; 0d(d+1)/2, Id(d+1)/2) is a building block of the wrapped
Gaussians.

One can find a proof of this result, as well as an explicit expression for Ψ in Appendix D.
Then, we give a wrapped version of the multivariate Central Limit Theorem (CLT)

(Theorem 5.12 of Wasserman 2004) for the manifold Pd. For this, we define the logarithmic
product introduced in Arsigny et al. (2006):

Definition 4.6 (Logarithmic product). Let p, q ∈ Pd. The logarithmic product of p and q is
defined as:

p⊙ q = exp (log p+ log q) .

Equipped with this logarithmic product, (Pd,⊙) forms a commutative group that is
isomorphic to (Sd,+)1. One can generalize this notation to the sum of n SPD matrices
p1, . . . , pn as

⊙n
i=1 pi = p1 ⊙ · · · ⊙ pn. Using this logarithmic product, we can state the

following theorem:

Theorem 4.7 (Wrapped CLT). Let (Xi)i∈N∗ be a sequence of i.i.d. random variables on
Pd. We suppose that the sequence (VectId(LogId(Xi)))i∈N∗ of random variables on Rd(d+1)/2

admits a finite second order moment. We denote by µ the mean and by Σ the covariance
matrix of VectId(LogId(X1)). Then,(

n⊙
i=1

(Xi ⊙m−1)

) 1√
n

d−−−→
n→∞

WG(Id, 0,Σ)

where d−−−→
n→∞

denotes the convergence in distribution and where m = ExpId(Vect
−1
Id

(µ)).

This theorem shows the interest of wrapped Gaussians, as they naturally appear in the
limit of a logarithmic product of random SPD matrices. The proof of this theorem can be
found in Appendix E. One can note that by generalizing the logarithmic product defined in
Definition 4.6 to another tangent space TpPd, one can extend the limit to WG(p; 0,Σ).

We can also give information on the mean of WG(p;µ,Σ) in the special case of µ = 0 i.e.
when the distribution on the tangent space TpPd is centered. We recall from definition 3 of
Pennec (2019) that a mean, or exponential barycenter, of a probability distribution α on Pd
is defined as a point p̄ ∈ Pd satisfying∫

Pd

Logp̄(x)dα(x) = 0.

For wrapped Gaussians, one has the following result:

1More information on the properties of this logarithmic product can be found in Arsigny et al. (2006).
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Figure 2. Illustration of the equivalence between two wrapped Gaussians
given by Proposition 4.9.

Proposition 4.8. A mean of WG(p; 0,Σ) is p.

The proof is straightforward from the definition of the wrapped Gaussian WG(p; 0,Σ).

4.4. An equivalence relation between wrapped Gaussians. A key property of the
Euclidean Gaussian N (µ,Σ) is its identifiability, meaning that the map (µ,Σ) 7→ N (µ,Σ)
is one-to-one (definition 1.5.2 of Lehmann and Casella 1998). The notion of identifiability
is important when one wants to learn the parameters of a distribution from a finite set of
samples as we will do in Section 5. If we consider a model based on the wrapped Gaussian,
we lose this property as we have the following proposition, illustrated in Figure 2:

Proposition 4.9. Let (p, µ,Σ) ∈ Θ and t ∈ R. One has that WG(p;µ,Σ) and WG(etp;µ−
tν,Σ) are equal where ν = Vectp(p) = (1, · · · , 1, 0, · · · , 0) ∈ Rd(d+1)/2.

All the proofs of this section can be found in Appendix G. One can verify using Equation (3),
that t 7→ etp is the geodesic γ : t 7→ Expp(tp) in Pd starting at point p and with initial
velocity p (as p is a symmetric matrix, it also belongs to TpPd ≃ Sd). Moreover, the map
t 7→ µ− tν = µ− tVectp(p) is also the geodesic in Rd(d+1)/2 with initial point µ and initial
velocity −ν = −Vectp(p). Therefore, when p is pushed in one “direction“ (initial velocity p),
µ is pushed in the opposite “direction“ (initial velocity −Vectp(p)).

A wrapped Gaussian can thus be represented by several sets of parameters, so we define
an equivalence relation between sets of parameters that define the same wrapped Gaussian:

Definition 4.10. Let θα = (pα, µα,Σα) ∈ Θ and θβ = (pβ, µβ,Σβ) ∈ Θ be two sets of
parameters. Then, θα and θβ are equivalent, which we denote by θα ∼= θβ , if they define the
same wrapped Gaussian i.e.

WG(pα;µα,Σα) = WG(pβ;µβ,Σβ).

We denote by [θα] the equivalence class of θα:

[θα] =
{
θ = (p′, µ′,Σ′) | θ ∼= θα

}
.

Using Proposition 4.9, one has the immediate corollary:
7



Figure 3. Results of the synthetic experiment on the estimation of parame-
ters of a wrapped Gaussian using an MLE.

Corollary 4.11. Let θα = (pα, µα,Σα) ∈ Θ and θβ = (pβ, µβ,Σβ) ∈ Θ. If there exists t ∈ R
such that

pβ = etpα, µβ = µα + tVectpα(pα) and Σβ = Σα,

then θα ∼= θβ.

Remark 4.12. All equivalence classes do not contain a wrapped Gaussian that is centered
on the tangent space (µ = 0). Therefore, allowing µ ̸= 0 increases the expressiveness of the
model.

Once we have defined an equivalence class [θ] of parameters that define the same wrapped
Gaussian, it is natural to define a representative of [θ]. We define it as follows:

Definition 4.13 (Representative of an equivalence class). We choose as representative of
the class [θ], the tuple of parameters θmin = (pmin, µmin,Σmin) such that µmin is minimal in
the sens of ∥ · ∥2. We call it the minimal representative.

One is able, given a tuple of parameters θ = (p, µ,Σ), to compute the minimal representative
of the class [θ] of equivalent tuples of parameters using the following proposition:

Proposition 4.14. Let θ = (p, µ,Σ) ∈ Θ be parameters. Then, the minimal representative
of the class [θ] as defined at Definition 4.13 is θmin = (pmin, µmin,Σmin) where

pmin = e
1
d

∑d
i=1 µip, µmin = µ− 1

d

d∑
i=1

µiν, Σmin = Σ

where we recall that ν = (1, · · · , 1, 0, · · · , 0) ∈ Rd(d+1)/2.

This minimal representative will be used in the following.

5. Estimation of the parameters of a wrapped Gaussian distribution

In this section, we tackle the parameter estimation problem of a wrapped Gaussian given
samples. After introducing the Maximum Likelihood Estimator we will use, we lead some
synthetic experiments to assess its performance.

5.1. A Maximum Likelihood Estimator. Let x1, ..., xN be N SPD matrices of size d× d
independently sampled from a wrapped Gaussian with unknown parameters θ⋆ = (p⋆µ⋆,Σ⋆)
supposed to be minimal in the sens of Definition 4.13. Our goal is to estimate θ⋆ given
the samples (x1, ..., xN ) using a Maximum Likelihood Estimator (MLE) (see Section 9.3 of
Wasserman 2004). Let us introduce the likelihood LN of the model:

LN (p;µ,Σ) =
N∏
i=1

fp;µ,Σ(xi)
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where fp;µ,Σ is the density of the wrapped Gaussian WG(p;µ,Σ) as given in Equation (6).
We will also consider the log-likelihood ℓN defined as ℓN (p;µ,Σ) = logLN (p;µ,Σ). Then,
we define the classical MLE θ̂N = (p̂N , µ̂N , Σ̂N ) as the parameter θ that maximizes LN (or
equivalently ℓN ). In the Euclidean setting, one has a closed form of the MLE of µ and Σ,
obtained by computing the gradient of ℓN . When dealing with wrapped Gaussians on Pd,
we were not able to derive a closed form for the MLE p̂N of the parameter p2. However, the
MLE of µ and Σ are analogous to the Euclidean setting but depend on p⋆:

Proposition 5.1. The MLE µ̂N and Σ̂N of the parameters µ and Σ of the wrapped Gaussian
are:

µ̂N =
1

N

N∑
i=1

VLogp⋆(xi),

Σ̂N =
1

N

N∑
i=1

(
VLogp⋆(xi)− µ̂N

) (
VLogp⋆(xi)− µ̂N

)⊤
where VLogp⋆ = Vectp⋆ ◦Logp⋆.

One can note that in proposition 4.7 of Galaz-Garcia et al. (2022), they also have
a closed from for the MLE of Σ that depends on p⋆ without any closed form for p̂N . In
practice, we used a Riemannian Conjugate Gradient algorithm (Boumal, 2023) on the product
manifold Θ = Pd×Rd(d+1)/2 ×Pd(d+1)/2 to compute the optimal parameters (p̂N , µ̂N , Σ̂N ). We
implemented this MLE in Python using the toolbox Pymanopt (Townsend et al., 2016)3.

This estimation problem can become challenging as the dimension d of the considered
SPD matrices increases. In fact, the number of coefficients to estimate is:

d(d+ 1)

2︸ ︷︷ ︸
p

+
d(d+ 1)

2︸ ︷︷ ︸
µ

+
d2(d+ 1)2 + 2d(d+ 1)

8︸ ︷︷ ︸
Σ

which grows at a rate of O(d4). For example, if d = 10, there are 1, 650 coefficients to
estimate and if d = 30, the number jumps to 109, 275. One should thus make sure that the
number of samples N is sufficiently big for results of the MLE to make sense. To get around
this issue when the number of samples is small, one can assume that the covariance matrix
Σ is diagonal, which reduces the number of coefficients to O(d2). This assumption implies
independent entries of the SPD matrices and will be used in Section 6.4.

In other works, such as in Chevallier et al. (2022) or in Chevallier and Guigui (2020), the
authors use the method of moments (see Section 9.2 of Wasserman 2004) to estimate the
parameter. In our case, we can use the method of moment only when we know a priori
that µ⋆ = 0. Then, as given in Proposition 4.8, a mean of the wrapped Gaussian is p⋆,
therefore, it can be estimated using the Riemannian mean p̂N = G(x1, ..., xN ) (Moakher,
2005), and Σ can be estimated using Proposition 5.1. However, in a more general case of
µ⋆ ̸= 0, estimating p⋆ using the Riemannian mean does not lead to the correct estimation of
the true parameters. We give more details on why in Appendix H.

5.2. Synthetic experiments. We led some synthetic experiments to evaluate the MLE’s
performances. For this, we sampled N points from a wrapped Gaussian in Pd whose minimal
parameters (p⋆, µ⋆,Σ⋆) are known. Then, we optimize the MLE to find (p̂N , µ̂N , Σ̂N ), and
compare the true and minimal estimated parameters: for p and Σ, we compare them using

2Moreover, it is unlikely that there exists such a closed form, as for example, there is no closed form for
the Riemannian mean on Pd (Moakher, 2005).

3Upon acceptation, our code will be made available on GitHub.
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the AIRM distance and for µ, we use ∥ · ∥2. In this experiment, we looked at how the
estimation error evolves when the number of samples N grows from 100 to 10, 000. We also
compare different dimensions d ∈ {2, 5, 10}. More details on the experimental setup are
given in Appendix I. The results of this experiment can be found in Figure 3. We can see
that, as one would expect, as the number N of points sampled grows, the estimation error
decreases. Moreover, we can remark that the dimension d does not affect the results of the
estimation of p and µ, but really affects the estimation of Σ. The higher the dimension d,
the higher the error δ(Σ̂N ,Σ

⋆) is. This is coherent as the number of parameters of Σ grows
as O(d4), so even a small increase of the dimension d leads to an important increment in the
estimation error of Σ. We also led some experiments in the case where the covariance matrix
Σ is diagonal. We show, in Appendix J, that in this case, one needs fewer samples to have a
good estimation of Σ when the dimension d rises.

6. Classification using wrapped Gaussians

Dataset Application Dimension # matrices # classes Reference

BNCI2014004 BCI 3× 3 720 x 9 subjects 2 (Leeb et al., 2007)
Zhou2016 BCI 5× 5 320 x 4 subjects 2 (Zhou et al., 2016)
AirQuality Atmospheric data 6× 6 102 3 (Smith et al., 2022)

Indiana Pines Hyperspectral imaging 5× 5 14, 641 12 (Baumgardner et al., 2015)
Pavia Univ. Hyperspectral imaging 5× 5 185, 176 6 -

Salinas Hyperspectral imaging 5× 5 94, 184 17 -
Textile Image Analysis 10× 10 16, 000 2 (Bergmann et al., 2021)

BreizhCrops Hyperspectral imaging 13× 13 177, 658 6 (Rußwurm et al., 2020)
Table 1. Summary of the datasets used for the experiments.

In this section, we demonstrate that widely used geometry-aware classifiers on Pd can be
integrated into a probabilistic framework. We also introduce new classifiers based on the
wrapped Gaussian and conduct experiments on real-world data from various applications.

6.1. Classifiers used for SPD matrices.
MDM. The Minimum Distance to Mean (MDM) algorithm described in Barachant et al.
(2010) is a popular classifier for SPD matrices. Given a training set of labeled SPD matrices,
the MDM computes the Riemannian mean (Moakher, 2005) Gk of each class k ∈ {1, ...,K}.
Then, given a new SPD matrix p, the predicted class k̂ is the class for which the distance
between p and Gk is the smallest.
LDA and QDA. In a Euclidean setting, the Linear Discriminant Analysis (LDA) (section
4.3 of Hastie et al. 2009) is a classifier that assumes that each class k ∈ {1, ...,K} is modeled
by a multivariate Gaussian N (µk,Σ) where the covariance matrix Σ is shared among all
the classes. First, the parameters of each class are learned using an MLE on the training
data. Then, to classify a new point z, LDA compares the log-likelihood of z according
to each class and chooses the class that has the highest log-likelihood. As the covariance
matrix is shared among the classes, the decision boundaries are linear, which led to its name:
linear discriminant analysis. When one assumes that the covariance matrices are not equal
among the classes, i.e. each class is modeled by N (µk,Σk), the decision boundaries are
quadratic. This classifier is called Quadratic Discriminant Analysis (QDA). One can restrict
the covariance matrices to be diagonal, which leads to the Diagonal LDA and Diagonal
QDA classifiers (Sandrine Dudoit and Speed, 2002). Then, the Diagonal QDA classifier is
equivalent to the Gaussian Naive Bayes classifier (see chapter 8 sec 3.3 of Bishop 2007).

A possible extension of LDA (or QDA) to the manifold of SPD matrices Pd is call Tangent
Space LDA (or Tangent Space QDA) and is described in part IV B. of Barachant et al. (2012).

10



Dataset Acc. MDM Acc. TS-LDA Acc. TS-QDA Acc. Ho-WDA Acc. He-WDA

BNCI2014004 78.71 (±14.53) 78.73 (±14.52) 76.07 (±13.94) 75.38 (±14.40) 74.37 (±14.73)
Zhou2016 91.18 (±5.51) 91.21 (±5.50) 89.45 (±7.43) 85.92 (±9.20) 82.86 (±11.65)
Air Quality 94.05 (±6.53) 94.05 (±6.53) 97.05 (±4.45) 96.05 (±4.17) 97.00 (±4.47)
Indiana 58.01 (±0.72) 67.07 (±0.53) 73.38 (±0.45) 73.74 (±0.51) 74.30 (±0.83)
Pavia Uni. 72.32 (±0.59) 84.61 (±0.06) 87.16 (±0.09) 87.36 (±0.07) 85.54 (±0.15)
Salinas 36.42 (±0.12) 46.30 (±0.17) 69.87 (±0.21) 71.20 (±0.33) 62.39 (±0.22)
Textile 83.08 (±0.62) 83.12 (±0.63) 86.03 (±0.66) 86.26 (±0.59) 85.93 (±0.77)
BreizhCrops 45.48 (±0.25) 47.67 (±0.32) 50.72 (±0.28) 54.66 (±0.45) 51.33 (±0.58)

Table 2. Accuracy of the different classifiers on the different datasets we consider.

The Riemannian mean G of the training set is computed, and all training points are sent to
the tangent space TGPd via the exponential map ExpG. Then, a classical LDA (or QDA)
can be used in this Euclidean space.
Other classifiers from SPD matrices. Other classifiers that have been developed for
SPD matrices. For example, Multinomial Logistics Regression has been extended for SPD
matrices in Chen et al. (2024). They rely on metric that arex pulled back from the Euclidean
space which is not the case of the AIRM metric we use in our work. Several deep learning
approaches have been proposed to classify SPD matrices (Huang and Van Gool, 2017; Brooks
et al., 2019; Nguyen, 2021). However, most of these approaches distort the geometry of
the manifold and are out of the scope of this work, as our approach does not rely on deep
learning.

6.2. A general probabilistic framework. Our goal is to show that the MDM, Tangent
Space LDA or Tangent Space QDA can be seen as part of a probabilistic framework on the
manifold of SPD matrices. More precisely, we will show that the previous classifiers can be
rewritten as Maximum Likelihood based classifiers (like the classical LDA or QDA) where
the different classes are modeled using distributions on the manifold Pd. Let us consider K
classes of labeled SPD matrices and let us denote αk the modeled distribution of class k.
MDM. For the MDM classifier, we first need to recall the isotropic Gaussians on Pd
introduced in Said et al. (2018). Let ȳ ∈ Pd and σ > 0, then, the isotropic Gaussian denoted
G(ȳ, σ) is defined by the following density:

∀y ∈ Pd, fȳ,σ(y) =
1

ζ(σ)
exp

[
−δ(y, ȳ)2

2σ2

]
where ζ(σ) is a normalizing constant. If one supposes that each class is modeled by an
isotropic Gaussian with a σ shared among all the classes i.e.

αk = G(ȳk, σ)

then, the MDM is equivalent to a maximum likelihood classifier. Here, the spread σ of the
isotropic Gaussians does not play any role in the classification process. So, during training,
one only has to estimate ȳk for each class, which is the center of mass and can be estimated
using the Riemannian mean (see proposition 7 of Said et al. 2018).
Tangent Space LDA or QDA. For the Tangent Space LDA, we will leverage the Wrapped
Gaussians introduced in Section 4. Suppose that each class is modeled by a wrapped Gaussian
centered at G, the Riemannian mean of the training set, and with a shared covariance matrix
Σ for the Tangent Space LDA i.e.

αk = WG(G;µk,Σ)
11



or with one covariance matrix Σk per class for the Tangent Space QDA i.e.

αk = WG(G;µk,Σk).

Then, the Tangent Space LDA (or Tangent Space QDA) is a maximum likelihood classifier
based on those distributions.

6.3. Wrapped Discriminant Analysis. Having placed the various classifiers that are used
on the manifold of SPD matrices in a probabilistic framework, we propose a new maximum
likelihood classifier based on the wrapped Gaussians introduced in Section 4. First, let us
model each class by a wrapped Gaussian with a shared covariance matrix Σ among the
classes:

αk = WG(pk, µk,Σ).

To learn the parameters of each class, we optimize an MLE on the whole model to find the
parameters:

(p1, ..., pK , µ1, ..., µK ,Σ) ∈ argmax
p,µ,Σ

K∏
k=1

Nk∏
i=1

fpk;µk,Σ(x
k
i )

where (xki )i=1,..,Nk
are the training points of class k. The implementation is the same as

in Section 5. We call it the Homogeneous Wrapped Discriminant Analysis (Ho-WDA).
As for the QDA, we propose another version of this classifier where each class has its own

covariance matrix Σk:
αk = WG(pk, µk,Σk).

We call this classifier the Heterogeneous Wrapped Discriminant Analysis (He-WDA). In that
case, an MLE is optimized on each class individually, as in Section 5:

∀k ∈ {1, ...,K}, (pk, µk,Σk) ∈ argmax
p,µ,Σ

Nk∏
i=1

fp;µ,Σ(x
k
i ).

6.4. Experiments. In this section, we want to compare the Ho-WDA and He-WDA to the
other classifiers (MDM, Tangent Space LDA denoted TS-LDA and Tangent Space QDA
denoted TS-QDA) used on the manifold of SPD matrices Pd and detailed in Section 6.1. For
this, we lead some experiments on 8 different real datasets coming from several applications.
We give a summary of the datasets used in Table 1 and more detail on each one of them in
Appendix K. For this experiment, we restricted ourselves to the case where the covariance
matrices Σ are diagonal. Therefore, one has fewer coefficients to estimate and the MLE needs
less points to converge. We give the accuracy of the classifiers we study on the different
datasets at Table 2.

We can see two different behaviors. First, on the datasets with a lot of matrices (Textile,
Salinas, Indiana Pines, Pavia Univ., BreizhCrops), the Ho-WDA and He-WDA perform
the best. The number of parameters to estimate is high, so the more samples one has, the
better the estimation will be as we illustrated in the synthetic experiments at Section 5. For
BreizhCrops, even if the matrices are of size 13× 13, we have a lot of points (177, 658) so
the MLE is able to correctly estimate all the parameters. Secondly, on the BCI datasets
(BNCI2014004 and Zhou2016), we have significantly less points (less than 1, 000) so the
estimation of the parameters of the underlying wrapped Gaussians is less precise. In this
case, one can see that the MDM and the TS-LDA perform the best and the Ho-WDA and
He-WDA perform less well. However, on the AirQuality dataset, the Ho-WDA and He-WDA
perform the best. This is interesting as the number of matrices available in the dataset is
small (102). An explanation could be that the underlying distribution of the data is not
very complex, so a few points are enough to correctly estimate them. In BCI datasets, the
distribution is more complex, so one needs more points to correctly estimate the distribution.

12



Finally, we do not observe a clear dominance of the He-WDA over the Ho-WDA. This is
similar to the difference between the LDA and QDA where, often, an LDA can correctly
classify data.

7. Conclusion

In this work, we present a generalization of non-isotropic multivariate Gaussians on the
manifold of SPD matrices: Wrapped Gaussians, and we give some theoretical properties. We
solved the non-identifiability of our model by defining an equivalence relation between the
set of parameters that define the same wrapped Gaussian. We also give all the tools needed
to use the distribution in practice, such as an easy-to-use sampling algorithm or an MLE
that correctly estimates the parameters of a wrapped Gaussian. Finally, we showed that the
MDM, TS-LDA and TS-QDA classifiers can be seen as part of a probabilistic framework
using wrapped Gaussians. We introduced two new classifiers based on the wrapped Gaussian:
Ho-WDA and He-WDA. We showed that the Ho-WDA and He-WDA perform well on real
data when the number of samples is sufficient. In future work, we plan to investigate the use
of wrapped Gaussians to perform data augmentation or transfer learning. Moreover, as we
have developed in the paper a geometry-aware Gaussian distribution, it becomes possible
to extend all the classical machine learning models that rely on Gaussian distributions to
the manifold of SPD matrices. For example, one could develop Gaussian Mixture Models,
Hidden Markov Models or Variational Autoencoders on Pd using wrapped Gaussians. These
models could then be applied to various tasks such as clustering, sequence modeling, or
anomaly detection on manifold-valued data. It could also be possible to explore the use of
wrapped Gaussians in the context of Bayesian inference, which could open new avenues for
probabilistic modeling and uncertainty quantification in manifold-based data analysis.
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Appendix A. The vectorization used

In Section 3.2, we defined an isomorphism between the tangent space TpPd at point p ∈ Pd
and Rd(d+1)/2. This isomorphism is called the vectorization and is denoted Vectp. This
isomorphism is not the only one that exists between the two spaces, so in this section we will
motivate our choice of the vectorization and give some of its properties.

Let p ∈ Pd. We recall that the tangent space TpPd at point p is a Euclidean space once
equipped with the inner product defined at Equation (1). Therefore, one can unveil an
orthonormal basis of TpPd. One can see that the tangent space at the identity TIdPd is the
classical Euclidean space Sd equipped with the Frobenius inner product. Therefore, one can
easily build an orthonormal basis of TIdPd and then, transport it to the other tangent spaces.

Proposition A.1 (Orthonormal basis of the tangent spaces). Let eij be the d× d matrix
with a 1 at position (i, j) and zeros everywhere else. Then

• An orthonormal basis of (TIdPd, ⟨·, ·⟩Id) is (EId,ij)i≤j defined as follows:

EId,ij =

{
1√
2
(eij + eji) for i < j,

eii for i = j.

• An orthonormal basis of (TpPd, ⟨·, ·⟩p) is (Ep,ij)i≤j where Ep,ij = p1/2EId,ijp
1/2.

Proof. One has that TIdPd ≃ Sd and that ⟨·, ·⟩Id is the Frobenius inner product, so one can use the classical basis of
Sd to build an orthonormal basis of TIdPd. Then, by transporting the basis of TIdPd to TpPd using the isometry
x 7→ p1/2xp1/2, one has a basis of TpPd. It is still orthonormal as x 7→ p1/2xp1/2 is an isometry. □

Let us give another intuition on the choice of this basis for (TpPd, ⟨·, ·⟩p):
Proposition A.2. The basis (Ep,ij)i≤j of (TpPd, ⟨·, ·⟩p) given at Proposition A.1 is the
parallel transport of the basis (EId,ij)i≤j of (TIdPd, ⟨·, ·⟩Id) from TIdPd to TpPd.
Proof. According to Equation 22 of Sra and Hosseini (2015), in the case of Pd, the parallel transport ΓId→p from
TIdPd to TpPd is:

∀u ∈ TIdPd, ΓId→p(u) = p1/2up1/2.

The result follows from the definition of (Ep,ij)i≤j . □

Now that we have an orthonormal basis of the tangent space TpPd, we give the link
between this basis and the vectorization Vectp:

Proposition A.3. Let (Ep,ij)i≤j be the orthonormal basis of the tangent space TpPd described
at Proposition A.1. Let u ∈ TpPd. Then,

Vectp(u) = (⟨u,Ep,11⟩p, ⟨u,Ep,12⟩p, ⟨u,Ep,22⟩p, · · · , ⟨u,Ep,d−1d⟩p, ⟨u,Ep,dd⟩p).
Proof. We start with the case where p = Id. Let u = [[uij ]] ∈ TIdPd ≃ Sd. We simply need to show that, for i ≤ j,
one has

⟨u,EId,ij⟩Id =

{
uii if i = j,√
2uij if i < j.

One has, when i = j:
⟨u,EId,ii⟩Id = ⟨u, eii⟩Id = tr(ueii) = uii.

And when i < j:

⟨u,EId,ij⟩Id = ⟨u, 1√
2
(eij + eji)⟩Id =

1√
2
(tr(ueij) + tr(ueji)) =

√
2uij .

Therefore, one has the results for VectId .
Now, in the general case of p ∈ Pd, one has that, for i ≤ j

⟨u,Ep,ij⟩p = ⟨u, p1/2EId,ijp
1/2⟩p = ⟨p−1/2up−1/2, EId,ij⟩Id .

By using the definition of Vectp(u) = VectIn (p
−1/2up−1/2) and the result for p = Id, one has the result. □
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The previous proposition helps us motivate the choice of the vectorization. Indeed, this
vectorization is simply the coordinates of the tangent vector u in the orthonormal basis
(Ep,ij)i≤j of the tangent space TpPd. Now that we are more convinced on this choice of
vectorization, we give some of its important properties.

Proposition A.4. • Let u ∈ TpPd, then

∥Vectp(u)∥22 = Vectp(u)
⊤Vectp(u) = ∥u∥2p :=

√
⟨u, u⟩p.

Therefore, Vectp is not only an isomorphism, it is an isometry between (TpPd, ⟨·, ·⟩p)
and (Rd(d+1)/2, ∥ · ∥2).

• Let u ∈ TpPd, then

∥Vectp(Logp u)∥22 = Vectp(Logp u)
⊤Vectp(Logp u) = δ(p, u)2.

Proof. Let us prove the two points of the proposition.

• Let u ∈ TpPd. One has, using Proposition A.3,

∥Vectp(u)∥22 = Vectp(u)
⊤ Vectp(u) =

∑
i≤j

⟨u,Ep,ij⟩2p.

As (Ep,ij)i≤j is an orthonormal basis of the Euclidean space (TpPd, ⟨·, ·⟩p), one has that∑
i≤j

⟨u,Ep,ij⟩2p = ∥x∥p.

which proves the first point.
• Let u ∈ TpPd. One has, using the previous point, the definition of ∥ · ∥p, the expression of the Riemannian

logarithm given at Equation (3) and the expression of the AIRM distance given at Equation (2):

∥Vectp(Logp u)∥22 = ∥Logp u∥2p = ∥p−1/2 Logp u p
−1/2∥F = ∥ log(p−1/2up−1/2)∥F = δ(p, u)2.

□

Finally, let us give a consequence of the previous property on the Jacobian of the vector-
ization: as Vectp is an isometry, there is no volume change via the vectorization.

Appendix B. The push-forward

In this section, we give the definition and an important result on the push-forward measure.
One can find more information on the push-forward measure in Section 3.6 of Bogachev
(2007).

Definition B.1 (Pushforward measure). Given two measurable spaces (X ,ΩX ) and (Y,ΩY),
a measurable map f : ΩX → ΩY and a measure µ : ΩX → [0,+∞], the pushforward of µ is
defined to be the measure f#µ : ΩY → [0,+∞] given by

∀B ∈ ΩY , (f#µ)(B) = µ(f−1[B]).

where f−1[B] is the preimage of B by f .

We now give the most important result on pushforward measures: the change of variables

Theorem B.2 (Change of variables). Let µ be a non-negative measure. An ΩY -measurable
function g on Y is integrable with respect to the pushforward measure f#µ if and only if the
function g ◦ f is integrable with respect to the measure µ. In this case, one has:∫

Y
g(y)d(f#µ)(y) =

∫
X
(g ◦ f)(x)dµ(x).
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Appendix C. The Jacobian determinant of the exponential map on the
manifold of SPD matrices

In this section, we give a proof of the result stated at Proposition 4.3. More specifically,
we want to show that the Jacobian determinant of the exponential map ExpId at identity is:

JId(u) = 2
d(d−1)/2

∏
i<j

sinh
(
λi(u)−λj(u)

2

)
λi(u)− λj(u)

(7)

where the (λi(u))i are the eigenvalues of u.
Let us start by recalling that, when the tangent plan of interest is at the identity Id, the

Riemannian exponential map ExpId is simply the matrix exponential exp:

ExpId : u ∈ TIdPd 7→ exp(u) ∈ Pd.
One can see this result using the expression of the Riemannian exponential given in Equa-
tion (3).

To prove the relation Equation (7), we will start by the case where u is a diagonal matrix.
We will then extend the result to the general case.
Case 1: u ∈ TIdPd diagonal. Let us consider u ∈ TIdPd diagonal, u = diag(λ1, ..., λd).

In the following, we will denote by Ψ the differential of the Riemannian exponential in u:
Ψ = dExpId(u) = d exp(u). We therefore want to compute the determinant of Ψ: detΨ.
One has that Ψ: TIdPd → Texp(u)Pd, where we have identified TuTIdPd with TIdPd. To
compute the determinant, one need to choose adequate bases in both tangent spaces TIdPd
and Texp(u)Pd. By “adequate”, we mean that the transformation between the two bases does
not imply any volume change. For this, we consider for TIdPd the basis (EId,ij)i≤j and for
Texp(u)Pd the basis (Eexp(u),ij)i≤j as defined at Proposition A.1. According to Proposition A.2,
the transformation from the first to the second basis is the parallel transport, which does
dot imply any volume changes, as the parallel transport is an isometry (see Prop 10.36 of
Boumal 2023).

Now that we have our two basis, we want to compute the matrix of Ψ in those two bases.
For this, we need to compute Ψ(EId,ij) and express it in the basis (Eexp(u),ij)i≤j . As u is
diagonal, we can use the Daletskii-Krein formula (see Daletskii and Krein (1965) or Equation
2.40 of Bhatia 2007) that states the following in our case: for h ∈ TpPd,

Ψ(h) =
[[
exp[1](u)ijhij

]]
(8)

where

exp[1](u)ij =

{
eλi for i = j,
eλi−eλj
λi−λj for i ̸= j.

Using the previous formula, one can compute Ψ(EId,ij) for i ≤ j. Now, one needs to
compute the coefficients of Ψ(EId,ij) in the basis (Eexp(u),kl)k≤l. As the basis (Eexp(u),kl)k≤l
is orthonormal, one simply needs to compute the dot product between Ψ(EId,ij) and one
element of the basis to get the corresponding coefficient. For k ≤ l, one has:

⟨Ψ(EId,ij), Eexp(u),kl⟩exp(u) = ⟨Ψ(EId,ij), exp(u/2)EId,kl exp(u/2)⟩exp(u) using the definition of Eexp(u),kl

= tr (Ψ(EId,ij) exp(−u/2)EId,kl exp(−u/2)) using the definition of the AIRM metric

= ⟨exp(−u/2)Ψ(EId,ij) exp(−u/2), EId,kl⟩Id
Therefore, it is the coefficient (k, l) of the matrix exp(−u/2)Ψ(EId,ij) exp(−u/2) (up to a
factor

√
2 when k ̸= l). We now need to compute this matrix. As u is diagonal, u =
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diag(λ1, ..., λd), one has that exp(−u/2) = diag(e−λ1/2, ..., e−λd/2). Therefore, and using
Equation (8), the coefficient (k, l) of the matrix exp(−u/2)Ψ(EId,ij) exp(−u/2) is:

e−λi/2eλie−λi/2 = 1 for i = j = k = l,

1√
2
e−λi/2 e

λi−eλj
λi−λj e−λj/2 =

√
2
sinh

(
λi−λj

2

)
λi−λj for i ̸= j and (k, l) = (i, j)

0 if (k, l) ̸= (i, j).

Therefore, the matrix of Ψ in the bases (EId,ij)i≤j and (Eexp(u),kl)k≤l is diagonal with diagonal

coefficients 1 and 2
sinh

(
λi−λj

2

)
λi−λj . Thus, the determinant of Ψ is the product of these coefficients,

which gives the result for the diagonal case.
Case 2: u ∈ TIdPd general. Let us now consider the general case where u ∈ TIdPd
is not diagonal. One has that, as u is symmetric, one can diagonalize it: u = gdg⊤

where g is an orthogonal matrix and d is diagonal. As exp(u) = g exp(d)g⊤, one has that
d exp(u)·h = g

(
d exp(d) · (g⊤hg)

)
g⊤. Therefore, as we are only interested in the determinant

of d exp(u), and as g are orthogonal, one has that det d exp(u) · h = det
(
d exp(d) · (g⊤hg)

)
.

One thus need to compute d exp(d) · (g⊤hg), and using Dalechii-Krein formula, as in the
diagonal case, one has:

d exp(d) · (g⊤hg) =
[[
exp[1](u)ij h̃ij

]]
(9)

where exp[1](u) is defined as above and g⊤hg = [[h̃ij ]]. In order to do the same proof as
for the diagonal case, one needs to modify the basis used in TIdPd as in Equation (9), the
coefficients of g⊤hg appear (rather than directly the coefficients of h as in the previous case).
Therefore, we choose as basis for TIdPd the basis (E

(u)
Id,ij

)ij where E
(u)
Id,ij

= gEId,ijg
⊤. One

can easily check that this basis is orthonormal and does not imply any volume changes. One
can now use the same proof as for the diagonal case to compute the determinant of d exp(u),
which gives the result for the general case.

Appendix D. The building block of the wrapped Gaussians

In this section, we give a proof of Proposition 4.5. For this, we will actually show a more
precise proposition:

Proposition D.1. Let (p, µ,Σ) ∈ Θ and X ∼ WG(p;µ,Σ). Then,

(1) p−1/2Xp−1/2 ∼ WG(Id;µ,Σ),
(2) Expp(Logp−Vect−1

p (µ)) ∼ WG(p; 0d(d+1)/2,Σ),
(3) Expp(Vect

−1
p (Σ−1/2Vectp(LogpX))) ∼ WG(p;µ, Id(d+1)/2).

Proof. In this proof, we will only show the first two points of the above definition, the third one being similar to them.

(1) Let Y = p−1/2Xp−1/2. We want to show that Y ∼ WG(Id;µ,Σ). For this, let φ : Pd → R be a continuously
bounded function. One has

E[φ(Y )] =

∫
Pd

φ(p−1/2xp−1/2)fp;µ,Σ(x)dvol(x)

=

∫
Pd

φ(p−1/2xp−1/2)
1√

(2π)d detΣ

exp
(
− 1

2
(Vectp(Logp(x))− µ)⊤Σ−1(Vectp(Logp(x))− µ)

)
|JId (log(p−1/2xp−1/2))| dvol(x).

Let us now define ψp : x 7→ p−1/2xp−1/2. ψp is a C1-diffeomorphisme between Pd and Pd. Moreover, as
the volume element dvol is invariant by congruence of GL(d,R), the transformation ψp does not imply any
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volume change. Therefore, by change of variables y = ψp(x), one has:

E[φ(Y )] =

∫
Pd

φ(y)
1√

(2π)d detΣ

exp
(
− 1

2
(Vectp(Logp(p

1/2yp1/2))− µ)⊤Σ−1(Vectp(Logp(p
1/2yp1/2))− µ)

)
|JId (log(p−1/2p1/2yp1/2p−1/2))| dvol(y)

=

∫
Pd

φ(y)
1√

(2π)d detΣ

exp
(
− 1

2
(Vectp(p1/2 log(y)p1/2)− µ)⊤Σ−1(Vectp(p1/2 log(y)p1/2)− µ)

)
|JId (log(y))|

dvol(y).

Finally, using that Vectp(p1/2 log(y)p1/2) = VectId(p
−1/2p1/2 log(y)p1/2p−1/2) = VectId(log(y)) and

LogId = log, we have,

E[φ(Y )] =

∫
Pd

φ(y)
1√

(2π)d detΣ

exp
(
− 1

2
(VectId (LogId (y))− µ)⊤Σ−1(VectId (LogId (y))− µ)

)
|JId (log(y))|

dvol(y).

This shows us that Y ∼ WG(Id;µ,Σ).
(2) Let now Y = Expp(Logp −Vect−1

p (µ)). We want to show that Y ∼ WG(p; 0d(d+1)/2,Σ). Let φ : Pd → R be
a bounded continuous function. One has

E[φ(Y )] =

∫
Pd

φ(Expp(Logp x−Vect−1
p (µ)))fp;µ,Σ(x)dvol(x)

=

∫
Pd

φ(Expp(Logp x−Vect−1
p (µ)))

1√
(2π)d detΣ

exp
(
− 1

2
(Vectp(Logp(x))− µ)⊤Σ−1(Vectp(Logp(x))− µ)

)
|Jp(Logp(x))|

dvol(x).

Let us now define ψp : x 7→ Expp(Logp x−Vect−1
p (µ)). ψp is a C1-diffeomorphisme between Pd and Pd

and its inverse is ψ−1
p : y 7→ Expp(Logp x+Vect−1

p (µ)). By change of variables y = ψp(x), one has:

E[φ(Y )] =

∫
Pd

φ(y)
1√

(2π)d detΣ

exp
(
− 1

2
Vectp(Logp(y))

⊤Σ−1 Vectp(Logp(y))
)

|Jp(Logp(y) + Vect−1
p (µ))|

dvol(y)
| det dψp(ψ−1(y))| .

We need to compute the change of volume term det dψp(ψ−1(y)). For this, let us start by saying that dψp(x) =

dExpp(Logp x−Vect−1
p (µ)) ◦ dLogp x therefore, det dψp(x) = det dExpp(Logp x−Vect−1

p (µ)) det d Logp x.
Now using the fact that dLogp(y) =

(
dExpp(Logp(y))

)−1 and the definition of Jp(u) = det dExpp(u) (see
Theorem 4.2), we have

det dψp(x) = Jp(Logp x−Vect−1
p (µ))

1

Jp(Logp x)

and thus, plugging ψ−1
p (y) into the equation:

det dψp(ψ
−1
p (y)) = Jp(Logp y)

1

Jp(Logp y +Vect−1
p (µ))

.

Therefore,

E[φ(Y )] =

∫
Pd

φ(y)
1√

(2π)d detΣ

exp
(
− 1

2
Vectp(Logp(y))

⊤Σ−1 Vectp(Logp(y))
)

|Jp(Logp(y))|
dvol(y).

This shows us that Y ∼ WG(p; 0d(d+1)/2,Σ).
(3) For the third point, one can prove it similarly as the two previous one, having in mind that the vectorization

Vectp is an isometry (see Proposition A.4) therefore, neither Vectp nor Vect−1
p implies any volume changes.

□

Therefore, Proposition 4.5 is a direct corollary of the previous result:

Corollary D.2. Let X ∼ WG(Id; 0d(d+1)/2, Id(d+1)/2) and let (p, µ,Σ) ∈ Θ. Let us define

Ψ: x ∈ Pd 7→ p1/2 Expp

(
Vect−1

p

(
Σ1/2

(
Vectp ◦Logp x+ µ

)))
p1/2.

Then, Ψ(X) ∼ WG(p;µ,Σ).
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Appendix E. The wrapped Central Limit Theorem

In this section, we give a proof of the wrapped Central Limit Theorem stated at Theorem 4.7.
For this, let (Xi)i∈N∗ be a sequence of independent and identically distributed random vari-
ables on the Riemannian manifold Pd. We suppose that the sequence (VectId(LogId(Xi)))i∈N∗

of random variables on Rd(d+1)/2 satisfies the classical Central Limit Theorem. We want to
show that the sequence (Xi)i∈N∗ satisfies the wrapped Central Limit Theorem.

Remark E.1. Let us start by saying that, as the map x 7→ VectId ◦LogId x is a diffeomorphism
between Pd and Rd(d+1)/2, the sequence (VectId(LogId(Xi)))i∈N∗ is also independent and
identically distributed.

As the sequence (VectId(LogId(Xi)))i∈N∗ satisfies the classical Central Limit Theorem in
Rd(d+1)/2, one has that,

1√
n

n∑
i=1

(
VectId(LogId(Xi))− µ

) d−−−→
n→∞

N (0,Σ).

By defining m = ExpId(Vect
−1
Id

(µ)) ∈ Pd, and using the linearity of Vectp:

VectId

(
1√
n

n∑
i=1

(LogId(Xi)− LogId(m))

)
d−−−→

n→∞
N (0,Σ).

Thus, by applying the continuous map ExpId ◦Vect
−1
Id

to the previous equation, by considering
the fact that the convergence in distribution is stable by continuous maps (theorem 5.5 of
Wasserman 2004) and the definition of the wrapped Gaussian (Definition 4.1), one has that

ExpIn

(
1√
n

n∑
i=1

(LogId(Xi)− LogId(m))

)
d−−−→

n→∞
WG(Id; 0,Σ).

We can now simplify the left-hand side of the previous equation:

ExpIn

(
1√
n

n∑
i=1

(LogId(Xi)− LogId(m))

)
= exp

(
1√
n

n∑
i=1

(logXi − logm)

)
using the expression of ExpId and
LogId of Equation (3).

= exp

(
n∑
i=1

(logXi + logm−1)

) 1√
n

using logm = − logm−1 and
exp(αx) = exp(x)α for α ∈ R.

= exp

(
n∑
i=1

log(Xi ⊙m−1)

) 1√
n

using the definition of the logarith-
mic product.

=

(
n⊙
i=1

Xi ⊙m−1

) 1√
n

.

Therefore, one has the final result of the wrapped Central Limit Theorem:(
n⊙
i=1

Xi ⊙m−1

) 1√
n

d−−−→
n→∞

WG(Id; 0,Σ).
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The generalized wrapped CLT. The previous version of the wrapped Central Limit
Theorem is centered around the identity matrix Id. However, one can generalize this theorem
to any point p ∈ Pd. For this, we need to introduce a generalized logarithmic product ⊙p

between two points q1, q2 ∈ Pd:
q1 ⊙p q2 = Expp(Logp q1 + Logp q2).

In the same way as before, one can show the following generalized wrapped CLT n⊙
p

i=1

Xi ⊙p M
−1

 1√
n

d−−−→
n→∞

WG(p; 0,Σ).

Appendix F. An extension to wrapped Elliptically Contoured Distributions

As one can see from the expression of the density of a wrapped Gaussian WG(p;µ,Σ)
given at Theorem 4.2, it is intrinsically linked to the density of the multivariate Gaussian
N (µ,Σ). This suggests a possible extension to Elliptically Contoured Distributions (chapter 6
of Johnson (1987) or Delmas et al. 2024). We recall the definition of an Elliptically Contoured
distribution:

Definition F.1 (Elliptically Contoured Distribution). A random vector X ∈ Rd follows an
Elliptically Contoured distribution if there exists µ ∈ Rd, Σ ∈ Pd and a function g such that
X has density

fX(x) = k det(Σ)−1/2g
(
(x− µ)⊤Σ−1(x− µ)

)
where k is a normalizing factor. We denote X ∼ EC(µ,Σ, g).

For example, the multivariate Gaussian N (µ,Σ) is an Elliptically Contoured distribution
with g : t 7→ exp(−t/2). Another example is the multivariate t-distributions for which
g : t 7→ (1 + t/ν)

−d+ν/2 (see V.B of chapter 1 of Delmas et al. 2024). One can then extend
what has been done previously on the wrapped Gaussian to define Wrapped Elliptically
Contoured Distributions just like above:

Definition F.2 (Wrapped Elliptically Contoured). Let p ∈ Pd, µ ∈ Rd(d+1)/2,Σ ∈ Pd(d+1)/2

and g be a function. Then, a random vector X on Pd follows a Wrapped Elliptically
Contoured denoted WEC(p;µ,Σ, g) if

X = Expp(Vect
−1
p (t)), t ∼ EC(µ,Σ, g).

One can then compute the density of WEC(p;µ,Σ, g) similarly as in Theorem 4.2. More-
over, all the work done on the equivalence relation for wrapped Gaussians stays valid for
wrapped elliptically contoured distributions.

Appendix G. The proofs on the equivalence relation

In this section, we want to give proofs of the different results of Section 4.4. We recall the
propositions and give their proofs. Let us start by Proposition 4.9.

Proposition G.1. Let (p, µ,Σ) ∈ Θ and t ∈ R. One has that WG(p;µ,Σ) and WG(etp;µ−
tν,Σ) are equal where ν = Vectp(p) = (1, · · · , 1, 0, · · · , 0) ∈ Rd(d+1)/2.

Proof. In this following, we denote by γ the function γ : t 7→ etp. Let us denote by f̃ the density of WG(γ(t);µ− tν,Σ)

and by f the density of WG(p;µ,Σ). We want to show that f̃ = f . Let x ∈ Pd, by Theorem 4.2, one has:

f̃(x) =
1√

(2π)d detΣ

exp

(
− 1

2

(
Vectγ(t)(Logγ(t)(x))− µ+ tν

)⊤
Σ−1

(
Vectγ(t)(Logγ(t)(x))− µ+ tν

))
|Jγ(t)(Logγ(t)(x))|

.
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One has, that

Logγ(t)(x) = γ(t)1/2 log(γ(t)−1/2xγ(t)−1/2)γ(t)1/2

= etp1/2 log(e−tp−1/2xp−1/2)p1/2 using that γ(t) = et

= etp1/2 log(e−tId)p
1/2 + et Logp(x) using that e−tId and p−1/2xp−1/2commute

= −tetp+ et Logp(x).

Furthermore, one has:

Vectγ(t)(Logγ(t)(x)) = −tet Vectγ(t)(p) + et Vectγ(t)(Logp(x)) using the linearity ofVectγ(t)

= −tet VectId (γ(t)−1/2pγ(t)−1/2) + et VectId (γ(t)
−1/2 Logp(x)γ(t)

−1/2)

= −tete−t VectId (p
−1/2pp−1/2) + ete−t VectId (p

−1/2 Logp(x)p
−1/2)

= −tVectp(p) + Vectp(Logp(x)).

Therefore, the numerator of the density f̃ can be rewritten as:

exp

(
−1

2
(Vectp(Logp(x))− µ)⊤Σ−1(Vectp(Logp(x))− µ)

)
.

which is the same numerator as f .
Let us now focus on the denominator. One has:

Jγ(t)(Logγ(t)(x)) = JId (γ(t)
−1/2 Logγ(t)(x)γ(t)

−1/2)

= JId (e
−tp−1/2 Logγ(t)(x)p

−1/2)

= JId (−tId + p−1/2 Logp(x)p
−1/2) using the computation of Logγ(t)(x).

We recall that the Jacobian determinant of the exponential map at the identity is:

JId (u) = 2d
∏
i<j

sinh
(

λi(u)−λj(u)

2

)
λi(u)− λj(u)

where (λi(u))i are the eigenvalues of u. Moreover, the eigenvalues of u := −αtId + p−1/2 Logp(x)p
−1/2 are

λi(u) = −αt+ λi

(
p−1/2 Logp(x)p

−1/2
)
.

Thus, for all i < j, one has:

λi(u)− λj(u) = λi

(
p−1/2 Logp(x)p

−1/2
)
− λj

(
p−1/2 Logp(x)p

−1/2
)

and therefore, this leads to:

JId (u) = JId

(
p−1/2 Logp(x)p

−1/2
)
= Jp

(
Logp(x)

)
.

So the denominator of the density f̃ is the same as the denominator of the density f and therefore, the two densities
are equal. □

Remark G.2. The function γ : t 7→ etp is actually the geodesic with initial point p and initial
velocity p. Indeed, the expression of the geodesic Γq,V (t) with initial point q and initial
velocity V ∈ TqPd is (see Pennec 2020):

∀t ∈ R, Γq,V (t) = q1/2 exp(tq−1/2V q−1/2)q1/2.

Therefore, the geodesic γ with initial point p and initial velocity p (which is a symmetric
matrix, therefore an element of TpPd ≃ Sd) is:

∀t ∈ R, Γp,p(t) = etp = γ(t).

We now want to show Proposition 4.14 that we recall underneath:
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Proposition G.3. Let θ = (p;µ,Σ) ∈ Θ be a tuple of parameters. Then, the minimal
representative of the class [θ] as defined at Definition 4.13 is θmin = (pmin;µmin,Σmin) where

pmin = e
1
d

∑d
i=1 µip,

µmin = µ− 1

d

d∑
i=1

µiν,

Σmin = Σ.

Proof. We want to find the smallest µmin in the sens of ∥ · ∥2 and the corresponding pmin such that (p;µ,Σ) ∼=
(pmin;µmin,Σmin). As all the µ in the equivalence class of [θ] are of the form µ − tν for t ∈ R, to find the smallest
µmin, one needs to minimize the following function:

φ : t 7→ ∥µ− tν∥22 = ∥µ∥22 − 2t⟨µ, ν⟩+ t2∥ν∥22.

One thus has:
φ′(t) = −2⟨µ, ν⟩+ 2t∥ν∥22.

The minimum is reached at tmin =
⟨µ,ν⟩
∥ν∥22

with ∥ν∥2 = nd and ⟨µ, ν⟩ =∑d
i=1 µi. Therefore, one has:

pmin = e
1
d

∑d
i=1 µip

µmin = µ− 1

d

d∑
i=1

µiν =

(
µ1 − 1

d

d∑
i=1

µi, · · · , µd − 1

d

d∑
i=1

µi, µd+1, · · · , µd(d+1)/2

)
.

□

Appendix H. Why does estimating p using the Riemannian mean fails in the
general case?

We said in Section 5 that when µ⋆ ̸= 0, using the Riemannian mean G(x1, ..., xN ) does
not work to estimate the parameters (p⋆, µ⋆,Σ⋆). Let us explain why. For this, we suppose
in the following that µ⋆ ̸= 0. Let p̂N be the Riemannian mean: p̂N = G(x1, ..., xN ). Then,
we can use Proposition 5.1 to compute the MLE of µ and Σ:

µ̂N =
1

N

N∑
i=1

VLogp̂N (xi),

Σ̂N =
1

N

N∑
i=1

(
VLogp̂N (xi)− µ̂N

) (
VLogp̂N (xi)− µ̂N

)⊤
.

where we recall that VLogp̂N is the vectorization at p̂N of Logp̂N i.e. VLogp̂N = Vectp̂N ◦Logp̂N .
Let us focus on µ̂N . Using the linearity of Vectp̂N , we can write that

µ̂N = Vectp̂N

(
1

N

N∑
i=1

Logp̂N (xi)

)
.

According to proposition 3.4 of Moakher (2005), as p̂N is the Riemannian mean of the points
(x1, ..., xN ), we have the following:

N∑
i=1

Logp̂N (xi) = 0.

Therefore, µ̂N = 0. It is therefore not a good estimator of µ⋆ ̸= 0. That is why we do not
use the Riemannian mean as an estimator of p in a general setting when we do not know a
priori that µ⋆ = 0.
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Appendix I. More details on the MLE experiments

In this section, we give more details on the setup of the synthetic experiments lead in
Section 5 to assess the quality of the estimation of parameters of a wrapped Gaussian using
an MLE. Upon acceptation, we will release the code used to perform these experiments. To
obtain the results plotted at Figure 3, we repeated 5 times the experiment with different
true parameters θ⋆ = (p⋆, µ⋆,Σ⋆) randomly generated. Here are details on how we generated
the true parameters:

• For p⋆, we use the function generate_random_spd_matrix from the library PyRie-
mann (Barachant et al., 2024). This function generates a random SPD matrix by
generating a random matrix A and then computing exp((X̄ + s ∗ A)⊤(X̄ + s ∗ A))
where X̄ and s are parameters chosen by the user. We set X̄ = 0.1Id and s = 1.

• For µ⋆, we generate a random vector of size d(d+1)/2 with values in [0, 0.1].
• For Σ⋆, we generate a random SPD matrix using the same function as for p⋆ with
X̄ = 0.01Id(d+1)/2 and s = 0.02.

We chose relatively small values for X̄ and s because otherwise, when the dimension d is
large, the generated parameters are very far from identity leading to numerical instability.

Appendix J. Estimating the parameters of a wrapped Gaussian when the
covariance matrix Σ is diagonal
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Figure 4. Comparison of the estimation of the parameters of a wrapped
Gaussian when the covariance matrix Σ is diagonal or full. The dimension of
the SPD matrices in this experiment is d = 10.

In this section, we detail the experiments on the estimation of the parameters of a wrapped
Gaussian when the covariance matrix Σ is diagonal. We used the same setup as in the
previous experiments detailed in Appendix I except that we generated Σ⋆ as a diagonal
matrix. The diagonal was uniformly sampled in [0, 1]. We repeated the experiment 5 times
with different true parameters. The goal for this experiment was to assess the impact of the
structure of the covariance matrix on the estimation of the parameters. We wanted to show
that when the covariance matrix is diagonal, the estimation of the parameters requires fewer
samples. We plotted the results in the case of dimension d = 10 at Figure 4. One can see
that, while the estimation of p and µ is not affected by the structure of Σ, the estimation
of Σ is better when Σ is diagonal. With a lot less samples, one can achieve a significantly
better estimation of Σ when it is diagonal. This is coherent as the number of coefficients to
estimate is reduced when Σ is diagonal. Therefore, this setting of Σ diagonal can be a good
choice when the number of samples is limited.
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Appendix K. More details on the real data experiments

Let us start by giving more details on the different datasets used in the experiments and
the preprocessing we used.

• BCI Datasets: We considered 2 datasets from Brain Computer Interfaces (BCI)
for our experiments: BNCI2014001 (Leeb et al., 2007) and Zhou2016 (Zhou et al.,
2016). They consist of several subjects and several sessions per subjects doing a
Motor Imagery task (Pfurtscheller and Neuper, 2001). We used the library MOABB
(Aristimunha et al., 2023) to load and preprocess the data. For each EEG, We start
by applying a standard band-pass filter with range [7; 35] Hz. Then, we used the
Ledoit-Wolf shrunk covariance matrix (Ledoit and Wolf, 2004) to in order to compute
the covariance matrices and to avoid ill-conditioned matrices. The experiment we
lead was cross-subject: each classifier was trained on all subject except one and tested
on this last subject.

• AirQuality: This dataset is from the Beijing Municipal Monitoring Center. It is a
dataset of air quality monitored from 34 different sites in Beijing, China (Hua et al.,
2021). For each site, six atmospheric pollutants where recorded every hour: CO,
NO2, O3, PM10, PM2.5 and SO2. We used the same preprocessing as in Smith et al.
(2022) to get a point cloud of 102 covariance matrices of size 6× 6. Each covariance
matrix has a label depending on which period it represents: weekdays, weekends or
holidays.

• Indiana, Pavia Uni, Salinas: These three dataset of hyperspectral remote sensing
datasets are all publicly available at https://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes. Each dataset contains one hyperspectral
image of a certain region containing a unique number of reflectance bands. We
applied the same preprocessing that in Collas et al. (2021) or (Bouchard et al., 2024)
that consists in four main steps. First, we normalize the data by subtracting the
image global mean. Then, we apply a PCA to reduce the dimension of the data
to 5. A sliding window with no overlap is then used around each pixel for data
sampling and then vectorized. In our experiments, we used a window of size 25× 25.
Finally, we compute the covariance matrix of each vectorized window using the
Sample Covariance Matrix to get a point cloud of covariance matrices. For each
covariance matrix, its class was computed by taking the majority class of the pixels
in the window.

• Textile: This dataset is made of a set of real images from textile manufacturing
that contain non-defective and defective woven textiles. These images come from
the public MVTec Anomaly Detection dataset (Bergmann et al., 2021). The same
preprocessing as in Smith et al. (2023) was applied to get the covariance matrices.
The two classes correspond to defective and non-defective textiles.

• BreizhCrops: This dataset is intended for supervised classification of field crops
from satellite time series. We used the dataset FRH01 that is composed of satellite
time series from the French region Finistère. As they are multivariate time-series,
we simply converted them to covariance matrices using the Oracle Approximating
Shrinkage estimator (Chen et al., 2010). The two classes correspond to different types
of crops. More details on this dataset can be found in the original paper (Rußwurm
et al., 2020).

For the non-BCI datasets (AirQuality, Indiana, Pavia Uni, Salinas, Textile and BreizhCrops),
we used a 5-fold cross-validation to evaluate the performance of the classifiers.

Let us also give some details on the implementation of the different classifiers used in the
experiments.
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• The MDM is implemented using the library PyRiemann (Barachant et al., 2024).
• The TS-LDA uses the TangentSpace class from PyRiemann (Barachant et al., 2024)

and the LDA from Scikit-learn (Pedregosa et al., 2011).
• The TS-QDA uses the TangentSpace class from PyRiemann (Barachant et al., 2024)

and the Naive Bayes classifier from Scikit-learn (Pedregosa et al., 2011).
• For the Ho-WDA and He-WDA, we implemented them using our MLE to estimate

the parameters of the wrapped Gaussians. To optimize the MLE, we used in practice
the Riemannian Conjugate Gradient method (Boumal, 2023) with a maximum of
1, 000, 000 iterations and a max time set to 2 hours.
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